Exercise 86

Find the dimensions of the rectangular corral split into 2 pens of the same size producing the greatest possible enclosed area given 300 feet of fencing.

Solution

Draw a schematic of the rectangular corral, labelling the length and width as L and W, respectively.

The perimeter is the sum of the lengths.

$$
\begin{aligned}
P & =L+L+W+W+W \\
& =2 L+3 W
\end{aligned}
$$

It's given to be 300 feet.

$$
300=2 L+3 W
$$

Solve for L.

$$
\begin{gathered}
300-3 W=2 L \\
\frac{1}{2}(300-3 W)=L \\
L=150-\frac{3}{2} W
\end{gathered}
$$

Write the formula for the area, substitute the result for the length, and complete the square to write the quadratic function in vertex form.

$$
\begin{aligned}
A=L W=\left(150-\frac{3}{2} W\right) W & =150 W-\frac{3}{2} W^{2} \\
& =-\frac{3}{2}\left(W^{2}-100 W\right) \\
& =-\frac{3}{2}\left[\left(W^{2}-100 W+50^{2}\right)-50^{2}\right] \\
& =-\frac{3}{2}\left[(W-50)^{2}-50^{2}\right] \\
& =-\frac{3}{2}(W-50)^{2}+3750
\end{aligned}
$$

Therefore, the maximum area is $A=3750 \mathrm{ft}^{2}$, which occurs when $W=50 \mathrm{ft}$ and $L=150-\frac{3}{2}(50)=75 \mathrm{ft}$.

